일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
- Spark
- twosum
- 장고
- 깊이우선탐색
- 프로그래머스
- ELK
- leetcode
- dump
- elasticsearch
- 해시
- 키바나
- python
- daspecialty
- kibana
- 알고리즘
- Medium
- 파이썬
- 스파크
- Easy
- programmers
- RecommendationSystem
- 리트코드
- 엘라스틱서치
- AWS
- Django
- CentOS
- solution
- Algorithm
- Optimization
- dfs
- Today
- Total
Archive
Recommendation System Study Day4 - 6 (19.02) 본문
4)Day4_Matrix Factorization
Matrix Factorization
Recommendation System_Day4
yeo0.github.io
- YouTube
www.youtube.com
- YouTube
www.youtube.com
5)Day5_현대 세대의 Recommender System 장단점에 대한 이해
현대 세대의 Recommender System의 장단점에 대한 이해
Recommendation System_Day5
yeo0.github.io
Introduction to Recommender Systems
Recommender systems aim to predict users' interests and recommend product items that quite likely are interesting for them. They are among the most powerful machine learning systems that e-commerce companies implement in order to drive sales.
tryolabs.com
온라인 "필터 버블"을 주의하세요
웹 기업들이 그들의 서비스(뉴스와 검색 결과를 포함하여)를 우리의 개인적 성향에 맞추기 위해 노력할 때, 위험하고 의도하지 않은 결과가 나타납니다. 우리는 "필터 버블"의 함정에 빠지고, 우
www.ted.com
6)Day6_Cosine Similarity와 Pearson Correlation을 사용한 User based 및 Item based nearest neighbor Collaborative Filtering에 대한 이해
Cosine similarity 와 Pearson correlation을 사용한 User based 및 Item based nearest neighbor Collaborative Filtering에 대
Recommendation System_Day6
yeo0.github.io
Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Slides for my 4 hour tutorial on Recommender Systems at the 2014 Machine Learning School at CMU
www.slideshare.net
Similarity Functions for User-User Collaborative Filtering
Typically, user-user collaborative filtering has used Pearson correlation to compare users. Early work tried Spearman correlation and (raw) cosine similarity, but found Pearson to work better, and …
grouplens.org
'------- DS ------- > RS' 카테고리의 다른 글
Recommendation System Study Day11 - 12 (19.02) (0) | 2022.02.20 |
---|---|
Recommendation System Study Day7 - 10 (19.02) (0) | 2022.02.20 |
Recommendation System Study Day1 - 3 (19.02) (0) | 2022.02.20 |